

Valuation of regulating services of urban trees in Oslo

Urban Ecosystem Accounting Webinar

David N. Barton Norwegian Institute for Nature Research (NINA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817527

Case study : ecosystem accounting of Oslo suburbs' loss of large trees due to urban densification

Source: Hanssen et al. 2019

NľNA

www.nina.no

Planning question: net loss of regulating services from trees due to sub-urban densification?

Relevance for municipal policy and planning (1/2) - extent-condition account

	EXTENT-CONDITION ACCOUNT			(SMÅHUSPLAN SUBURBS - TREES)					
	Tree height (elevation bands)								
Crown cover	2.5-5m 5-10m 10-15m		15-20m	20-25m	25-30m	30-35m	35-40m	Total	
Total 2011 (daa	65	1150	1822	2495	1884	661	123	15	8214
Additions (daa	83	747	183	10	26	8	0	2	1059
Losses (daa	0	0	0	-82	-224	-313	-71	-7	-698
Total 2017(daa)	148	1898	2005	2422	1685	356	52	9	8574
Change 2011-2017(daa)	83	747	183	-73	-199	-305	-71	-6	361

Source: based on Hanssen et al. 2019

Net gain in tree canopy extent in suburban area 2011-2017, despite loss of taller trees

Source: https://transect.org/

Methods: Quantification and valuation of **regulating ecosystem services** of urban trees using **i-Tree Eco**

Source illustration : Zofie Cimburova, NINA

Input data for i-Tree Eco

Source illustration : Zofie Cimburova, NINA

i-Tree Eco results for average municipal tree

www.nina.no

• For each tree (16 1	89 trees = 54	%)	Annual monetary value			
	Average ES supply per tree	Average monetary value per tree	of an average tree Carbon sequestration Building			
Removed air pollution	0.8 kg/year	200 NOK/year	3 NOK energy savings 2 NOK			
Avoided stormwater runoff	1 m3/year	9 NOK/year	Avoided runoff 9 NOK			
Sequestrated carbon	8 kg/year	3 NOK/year				
Stored carbon Building energy savings	385 kg 1 (35) kWh/year	- 2 (45) NOK/year	Air pollution removal 200 NOK			
Total annual mon. value	-	220 NOK/year				
Mean asset value (NPV)	-	12 414 NOK	Source illustration			

Conclusions

- Value of **air pollution removal** = 94% of annual value of an avg. tree
- (numerous accounting price assumptions...)

Zofie Cimburova, NINA

Accounting price corrections to iTree Eco US default values

- Air pollution mitigation Norwegian PM2.5, NO2 health damage costs and SO2 building damage costs (not considering 100% future electric vehicles)
- Carbon sequestration Norwegian cost/tonne CO2 of reaching national emissions reduction targets
- Energy savings from building cooling 46% fossil fuel based electricity imports Norwegian electricity price 2017
- Stormwater runoff reduction current additional sewage treatment costs in Oslo from combined sewage overflow (not including future upgrade costs of sewage infrastructure due to climate change <u>5.5</u> <u>times current costs to 2050</u>)
- 2% risk free social discount rate for NPV asset calculations (not considering current near 0% interest rates)

www.nina.no

Bayesian Belief Networks to generalize asset value to all trees in the built zone of Oslo

iTree Eco emulation model in a Bayesian Belief Network (BBN)

Asset values of urban trees due to regulating services

(generalized to Oslo using iTree Eco emulation model)

Maps / Capital value of all Oslo trees (BBN

Relevance for municipal policy and planning (2/2) - monetary tree asset account

	MONETARY ASSET ACCOUNT			(SMÅHUSPLAN SUBURBS - TREES - REGULATING SERVICES)					
	Tree height (elevation bands)								
	2.5-5m	5-10m	10-15m	15-20m	20-25m	25-30m	30-35m	35-40m	Total
E(Asset value)* (NOK/m2)	167	148	128	119	118	165	213	100	
Total 2011 (NOK)	10 887 326	170 469 304	233 351 800	297 903 938	221 465 342	109 002 315	26 122 118	1 478 261	1 070 680 404
Additions (NOK)	13 865 241	110 785 557	23 427 661	1 142 849	2 998 445	1 371 399	95 904	150 925	153 837 982
Losses (NOK)	-	-	-	- 9 805 576	- 26 386 555	- 51 692 347	- 15 176 275	- 732 634	- 103 793 386
Total 2017(NOK)	24 754 235	281 254 861	256 779 461	289 240 017	198 076 057	58 681 367	11 060 928	896 552	1 120 743 479
Change 2011-2017(NOK)	13 866 910	110 785 557	23 427 661	- 8 663 921	- 23 389 285	- 50 320 948	- 15 061 190	- 581 709	50 063 075

Source: own calculations (not peer reviewed) based on Hanssen et al. 2019

Note: *expected m2 tree crown asset values derived from BBN emulation model

Net gain in tree asset value due to regulating services of NOK 50 million in 2011-2017.

But the losses and gains are unevenly distributed. Some neighbourhoods experience a net loss, some a net gain.

SPATIALLY SENSITIVE ACCOUNTING **PRICES AND TABLES?**

«Households?»

Source figure: adapted Barton D.N. et al. (2019).

Source transect illustration https://transect.org/

Thank you

Acknowledgement Zofie Cimburova and Frank Hanssen, NINA

david.barton@nina.no

Mapping & Assessment for Integrated ecosystem Accounting http://maiaportal.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817527

References

i-Tree Eco: Cimburova, Z., Barton, D.N., 2020. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban Forestry & Urban Greening 55, 126801. <u>https://doi.org/10.1016/j.ufug.2020.126801</u>

LiDAR tree detection: Hanssen, F., D.N. Barton, M. Nowell, Z. Cimburova 2019. Mapping urban tree canopy cover using airborne laser scanning – applications to urban ecosystem accounting for Oslo. NINA Report 1677. Norwegian Institute for Nature Research <u>https://brage.nina.no/nina-</u><u>xmlui/handle/11250/2598874</u>

VAT: Nollet, A., Barton, D.N., Cimburova, Z., Often, A., 2021. Accounting for amenities and regulating ecosystem services of urban trees. Testing a combined field protocol for VAT19 and i-Tree Eco valuation methods. NINA report 1850. <u>https://brage.nina.no/nina-xmlui/handle/11250/2725332</u>

Barton D.N., Obst C., Day B., Caparrós A., Dadvand P., Fenichel E., Havinga I., Hein L., McPhearson T., Randrup T., Zulian G. (2019). Discussion paper 10: Recreation services from ecosystems. Paper submitted to the Expert Meeting on Advancing the Measurement of Ecosystem Services for Ecosystem Accounting, New York, 22-24 January 2019 and subsequently revised. Version of 25 March 2019. Available at: https://seea.un.org/events/expert-meeting-advancing-measurement-ecosystemservicesecosystem-accounting