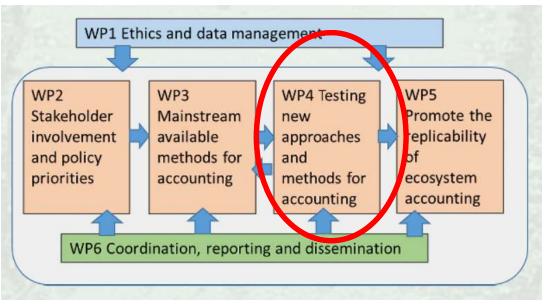


Modeling water regulation in support of ecosystem accounting

Stoyan Nedkov NIGGG-BAS

MAIA webinar 21th June 2021


- 1. Background
- 2. Models of water regulation: a review
- 3. Modeling and ecosystem accounting
- 4. Flood control modeling
- 5. Key findings and research perspectives

1. Developing new insights in order to fill selected key knowledge gaps in NCA

2. To ensure that the new insights will be shared among member states and applied in EU member state ecosystem accounting efforts.

Task 4.1 Modelling water regulation services in support of ecosystem accounting

Task 4.2 Exploring big data sources for quantifying cultural services

- Task 4.3 Valuing Ecosystem Services and Ecosystem Assets
- Task 4.4 Biodiversity accounting
- Task 4.5 Piloting Marine accounts

Task 4.6 Coordination of research and development activities

1. Background

Water-related and water regulation ecosystem services

Water related Ecosystem Services

Type of service	Description	Examples				
Provisioning services	Focused on directly supplying food and non-food products from water flows	Freshwater supply Crop and fruit production Livestock production Fish production Hydro-electric power				
Regulating services	Related to regulating flows or reducing hazards	Buffering of runoff, soil water infiltration, groundwater, maintenance of base flows Flood prevention, peak flow reduction landslide reduction Soil protection and control of erosion and sedimentation Control of surface and groundwater quality				
Supporting services	Provided to support habitats and ecosys- tem functioning	Wildlife habitat Flow regime required to maintain downstream habitat an uses				
Cultural services	Related to recreation and human inspira- tion	Aquatic recreation Landscape aesthetics Cultural heritage and identity Hawkins et al. 2009				

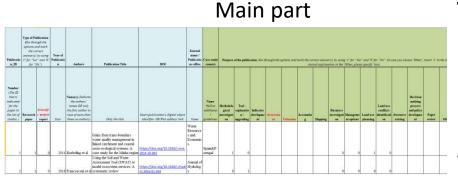
SEEA-EA 2021

Regulation of physical, chemical,	Regulation of baseline flows and extreme events		
biological conditions	Lifecycle maintenance, habitat and gene pool protection		
	Water condition		
Transformation of biochemical or physical inputs to ecosystems	Mediation of waste, toxics and other nuisances by non-living processes		
Regulation of physical, chemical, biological condition	Regulation of baseline flows and extreme events		

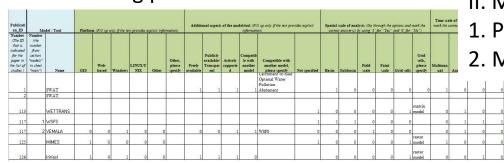
CISES version 5.1 (2018)

Control	ontrol of erosion rates			2.2.	F	.that mitigates or prevents ootential damage to human ise of the environment or numan health and safety		iman redu or Or ty Maci maci struc conti	The capacity of vegetation to prevent or reduce the incidence of soil erosion Or Macroalgae, microphytobenthos, macrophytes and biogenic reef structures (epifauna and infauna) all contribute through sediment stabilisation			r Reduction of damage (and associated costs) of sediment input to water courses	
	ogical cycle an ng flood contr			2.2.1 n)	3 By	depth/volun	w n A	iydrological cy iater flow naintenance nd lood protectic		2.2.1 & 2.2.2.2	Regulating the flo in our environmer		
	tion of the che aters by living		tion of	2.2.5	5.1 B)	type of living		hemical condi reshwaters	tion of	2.3.4.1	Controlling the ch quality of freshwa		
	ation of the ch s by living proc		ition of salt	2.2.	5.2 B	y type of livin		Themical cond alt waters	ition of	2.3.4.2	Controlling the ch quality of salt wat		
Dilution by freshwater and marine ecosystems		ns 5.1.	1.1 A	Amount by type		Dilution by atmosphere, freshwater and marine ecosystems		2.1.2.2	Diluting wastes				
Abiotic_S urface water for drinking (4.2.1.1.)	Abiotic_Surfac e water used as a material (non-drinking purposes) (4.2.1.2.)	Abiotic_Fre shwater surface water used as an energy source (4.2.1.3.)	Abiotic_Gro und (and subsurface) water for drinking (4.2.2.1.)	Abiotic_Grou nd water (and subsurface) used as a material (non- drinking purposes) (4.2.2.2.)	Abiotic_G ound water (and subsurface used as an energy source (4.2.2.3.)	r Abiotic_Dil) ution by	Abiotic_Me ation by oth chemical o physical means (5.1.1.3.)	er or	Biotic_Contro l of erosion rates (2.2.1.1.)	Biotic_Hydrologic al cycle and water flow regulation (Including flood control, and coastal protection), (2.2.1.3.)	Biotic_Maintaining nursery populations and habitats (Including gene pool protection), (2.2.2.3.)	Biotic_Regula of the chemic condition of freshwaters living proces (2.2.5.1.)	

Characterizing and assessing water regulation ES is challenging because:


- they can be regarded as both final and intermediate services i.e. it is usually difficult to distinguish between ES flow and ES potential;
- need various data which are usually not available through direct or indirect measurements
- It is often data-intensive and also analytically complex

..... therefore modeling approaches of water regulation are much needed!

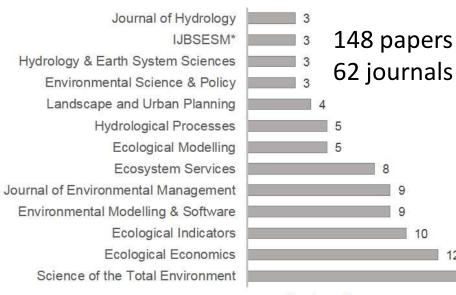

2. Models of water regulation: a review

<u>Main objective</u>: to provide an overview of efforts in modeling water regulation ES in the current scientific literature to establish the background for the integration of such models into the NCA framework

- 1. to identify models for water regulation
- 2. to identify water regulation services which can be assessed by modeling
- 3. to define the main characteristics of the models in relation to ecosystem accounting

Modeling part

Template structure

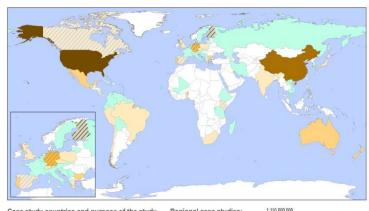

- I. Main part
- 1. Publication info (7)
- 2. General characteristics of the publication (16)
- 3. Accounting issues (7)
- 4. Ecosystem services (40)
- 5. General modeling information (13)
- II. Modeling part
- 1. Publication info (3) link to main part
- 2. Models specifics(46)

2. Models of water regulation: a review

10

12

15



Number of papers

Initial review:

139 different models and modeling approaches

Papers with: Single model – 122 2 models - 133 models - 8 4 models - 2 5 models - 2

Case study countries and purpose of the study on water regulated ES (number per country): Accounting:

Regional case studies - Europe (the continent) - 1

Accounting related: - Adriatic sea and Mediterranean sea - 1 - Danube river basin - 1 - Former Soviet Union, Sub-Saharan Africa, Latin America, Middle East, North Africa, OECD - 1 - EU - 3

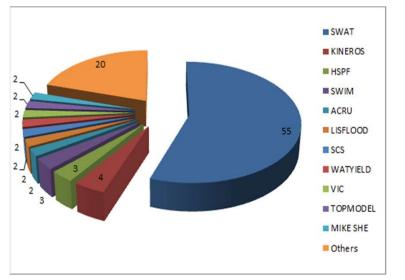
Main challenges

How to distinguish between the real models and modeling approaches and other methods defines as "models"?

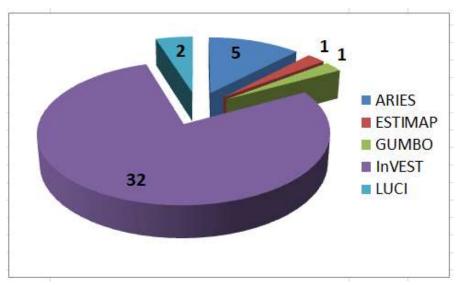
The great variety of models and modeling approaches and the need for classification.

The analyses of the entries in the modeling part of the database enabled to distinguish eight categories, which covered all possible models and modeling approaches used for water-related ES assessment and mapping:

- (1) Hydrologic models;
- (2) Hydraulic models;
- (3) Integrated modeling frameworks;
- (4) Other water-based models (methods which better fit the classical model understanding but do not fit the above categories);
- (5) GIS tools (use of tools which are an integral part of the commonly used GIS software such as ArcGIS, GRASS);
- (6) Water modeling approaches (approaches or methods which use equations to calculate particular water parameters which do not fit the classical model understanding);
- (7) Conceptual or expert-based approaches; and
- (8) Other models and modeling approaches (non-water models used in combination with hydrologic or other water-based models to assess particular service or management practice).



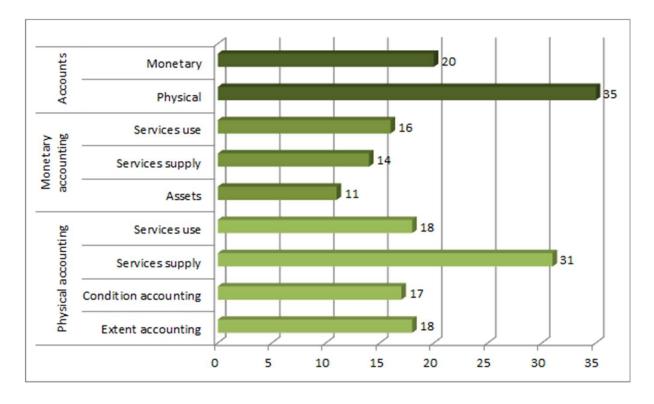
2. Models of water regulation: a review



Model cotogory	All p	n	
Model category	n	%*	models
1. Hydrologic models	99	67%	31
2. Hydraulic models	3	2%	3
3. Integrated modeling frameworks	42	28%	6
4. Other water-based models	13	9%	12
5. GIS tools	7	5%	7
6. Water modeling approaches	8	5%	8
7. Conceptual or expert-based approaches	10	7%	8
8. Other models and modeling approaches	18	12%	17

Hydrological models

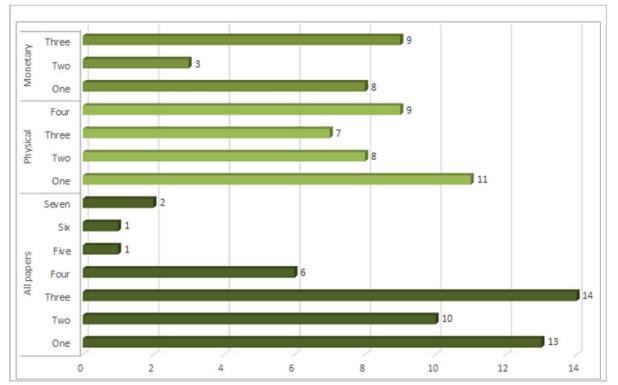
Integrated modeling frameworks



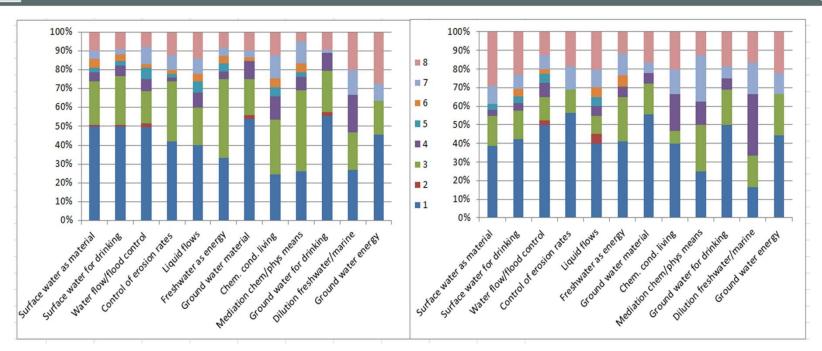
3. Modeling and ecosystem accounting

The papers were distributed into three groups according to their relation to the ecosystem accounting:

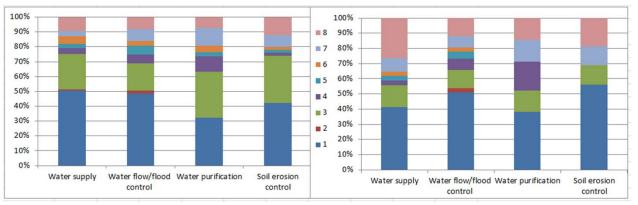
- papers that have accounting in their purpose 10
- papers with relation to accounting (accounting has been mentioned in the paper in a particular context e.g. as a possible application, policy and decision making, relation to the methods, etc.)- 37
- other papers which do not have any relation to the ecosystem accounting 101



3. Modeling and ecosystem accounting


The papers were distributed into three groups according to their relation to the ecosystem accounting:

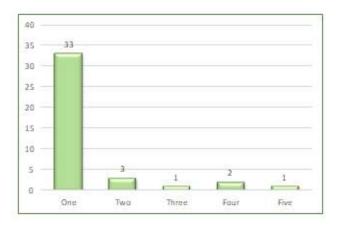
- papers that have accounting in their purpose 10
- papers with relation to accounting (accounting has been mentioned in the paper in a particular context e.g. as a possible application, policy and decision making, relation to the methods, etc.)- 37
- other papers which do not have any relation to the ecosystem accounting 101



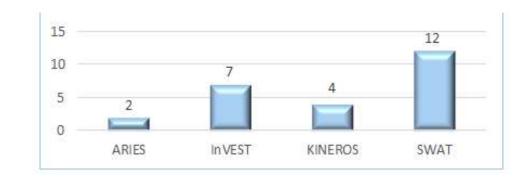
Distribution of papers related to ecosystem accounting to the number of accounting components covered by paper

3. Modeling and ecosystem accounting

Relation between ecosystem services (CICES classes) and model categories for all papers (left) and accounting related papers (right)


Relation between ES (SEEA-EEA reference list) and model categories (for all papers (left) and accounting related papers (right), the number of the models are given in table 1.

4. Flood control modeling



Extraction from the review

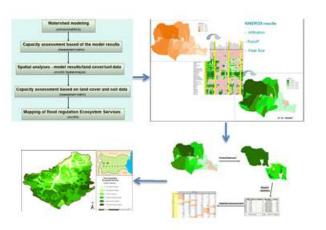
- The number of models used in each paper*
- Most commonly used models**
- Number of papers the four main models are used***
- The number single model papers the main models are used ****

4. Flood control modeling

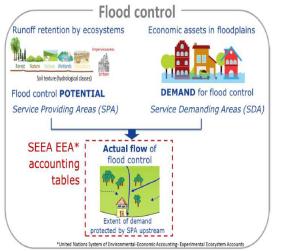
River vs. Coastal flood regulation

From the perspective of quantifying the economic value the methods are broadly the same but in quantifying the biophysical nature of the service there are major differences in terms of biophysical processes, data, models and methods

• Mitigation vs. Prevention function



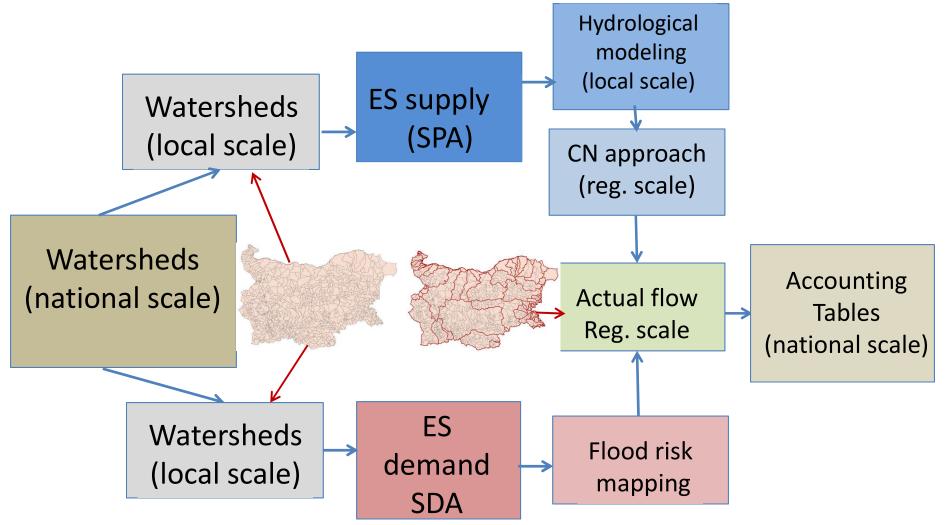
Floodplains and wetlands Hydraulic modeling


Ecosystems at watershed scale (forest) Hydrologic modeling

Utilizing hydrologic modeling in ES assessment

(Nedkov and Burkhard 2012

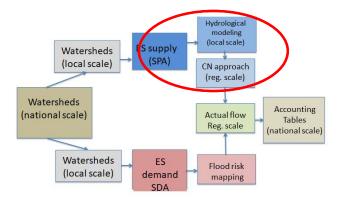
Flood ES accounting



Vallecillo et al. 2020

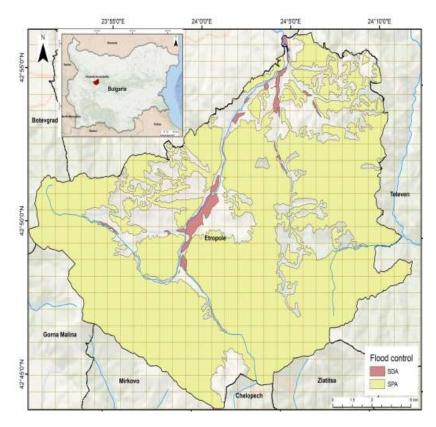
4. Flood control modeling

Conceptual scheme for Flood control accounting in Bulgaria



The main task is to delineate SPA as precisely as possible

- 1. Watersheds typology
- Hydrological modeling (case studies)


- 3. Calculation of LC indexes and CN parameters
- 4. Calculation of SPA threshold values
- 5. Application in watershed types
- 6. Floodplain and slope factors
- 7. Delineation of SPA for all watersheds

Results of the 1st stage testing at local scale

		l	ES Flood re	gulation			
Components	Cropland	Grassland	Heathland and shrub	Urban	Woodland and forest	Total [ha]	Years assessed
ES Potential	76.35	1560.82	132.12	48.14	26316.60	28134.03	2000
	76.91	1560.71	132.15	74.10	26290.10	28133.97	2006
	190.40	1551.12	124.04	68.44	26200.00	28133.99	2012
	271.40	1812.11	0.00	146.97	25903.50	28133.98	2018
	153.76	1621.19	97.08	84.41	26177.55	28133.99	average
	255.38	0.00	0.00	244.91	1.03		2000
	255.39	0.003	0.00	244.90	1.03		2006
ES Demand	259.91	3.40	0.00	231.78	6.23		2012
	263.01	0.00	0.00	232.08	6.23		2018
	258.42	0.85	0.00	238.42	3.63	501.32	average
ES Actual flow	0.21	4.20	0.36	0.13	70.77		2000
	0.21	4.20	0.36	0.20	70.70		2006
	0.51	4.17	0.33	0.18	70.46		2012
	0.73	4.87	0.00	0.40	69.66		2018
	0.41	4.36	0.26	0.23	70.40	75.66	average

(Hristova et al. 2021)

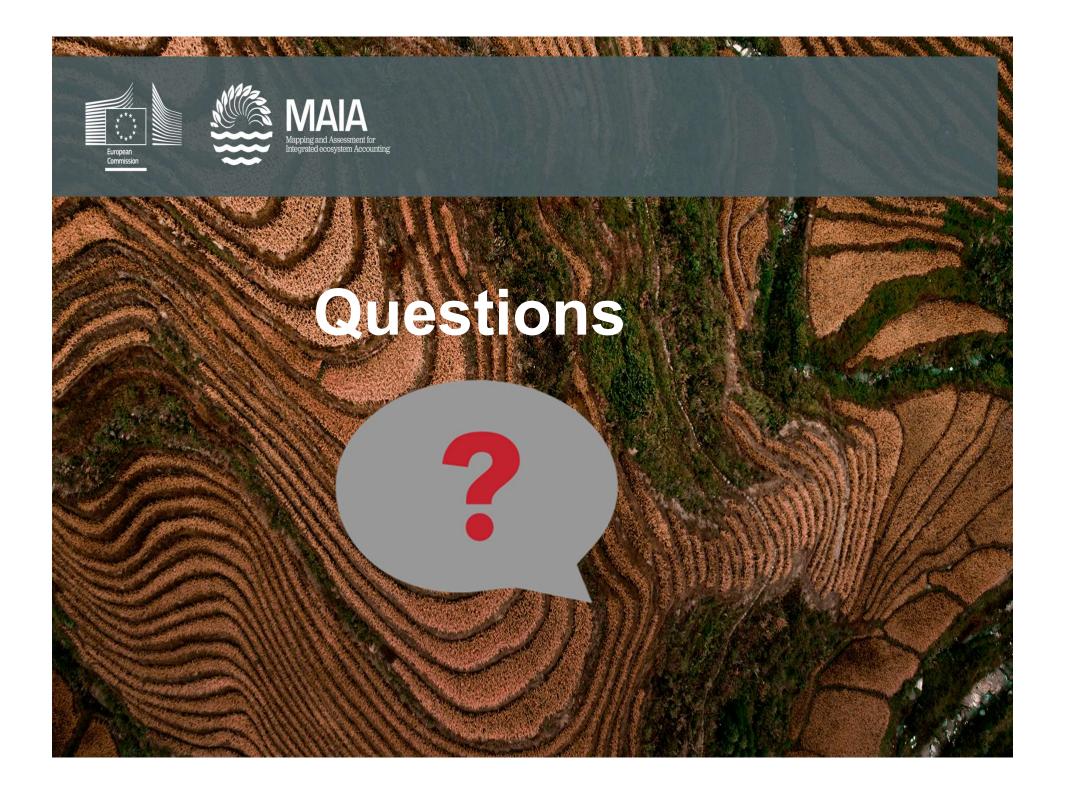
5. Key findings and research perspectives 🎬 MAIA

- The topic of modeling water-related ES is widely used in the scientific literature, which provides a good basis for both ecosystem assessment and accounting
- Specific accounting studies are scarce, which is a gap in ES research that needs to be filled
- A variety of approaches is available to model water-related ecosystem services
- The hydrologic model SWAT and the modeling tool InVEST are by far the most popular tools
- The hydrologic models are widely used while the hydraulic models are far less popular
- Further development of the model database and its planned integration into ESMERALDA MAES Explorer will enable to expand the online method database for mapping and assessing ES towards accounting

🔊 5. Key findings and research perspectives 🌉 MAIA

Main research priorities on the integration of models in the accounting of water regulation ecosystem services:

- 1) analyses of models in respect to their application requirements and specific application potentials;
- 2) analyses of the spatial aspects of the model towards a clear distinction between ecosystem service supply and use;
- 3) development of guidelines for improved use of models in ecosystem accounting


The team behind the literature review:

Sylvie Campagne, Bilyana Borisova, Petr Krpec, Hristina Prodanova, Ioannis P. Kokkoris, Desislava Hristova, Solen Le Clec'h, Fernando Santos-Martin, Benjamin Burkhard, Eleni S. Bekri, Vanya Stoycheva, Adrian Bruzon, Panayotis Dimopoulos

Thank you for your attention

snedkov@abv.bg

